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We study the average density of resonances �DOR� for a semi-infinite disordered chain, coupled to the
outside world by a �semi-infinite� perfect lead. A set of equations is derived, which provides the general
framework for calculating the average DOR, for an arbitrary disorder and coupling strength. These general
equations are applied to the case of weak coupling and an asymptotically exact expression for the averaged
DOR is derived, in the limit of small resonance width. This expression is universal, in the sense that it holds
for any degree of disorder and everywhere in the �unperturbed� energy band.
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I. INTRODUCTION

Open quantum systems often exhibit the phenomenon of
resonances. Resonances correspond to quasistationary states
which have a long lifetime but eventually decay into the
continuum. �A particle, initially within the system, escapes to
infinity.� One approach to the problem of resonances is based
on the study of the analytic properties of the scattering ma-
trix, S�E�, in the complex energy plane. Resonances corre-

spond to the poles, Ẽ�=E�− i
2��, of S�E� on the unphysical

sheet.1,2 An alternative approach amounts to solving the sta-
tionary Schrödinger equation, with the boundary condition of
an outgoing wave only. This condition, which makes the
problem non-Hermitian, describes a particle ejected from the
system. The Schrödinger equation with such boundary con-

dition admits complex eigenvalues Ẽ�, which correspond to
the resonances.1,2 This kind of approach leads in a natural
way to a non-Hermitian effective Hamiltonian, and it has
been used for a long time in scattering theory, including scat-
tering in chaotic and disordered systems �see Refs. 3 and 4,
and references therein�. There are many examples of reso-
nances in atomic and nuclear physics. More recently, there
has been much interest in resonant phenomena in the field of
chaotic and disordered systems �for a recent review, see Ref.
4�.

There is considerable amount of work concerning the dis-
tribution P��� of resonance widths in one-dimensional dis-
ordered chains.5–9 Numerical studies presented in that work
demonstrate that, in a broad range of �, P�����−�, with the
exponent � being close to 1. �A similar behavior pertains also
to two- and three-dimensional systems with localized
states7,9�. An analytical calculation8 has been performed for a
one-dimensional continuous �white-noise� potential, in the
semiclassical limit, when the localization length is large. It
has been shown in that work that in a broad range of �, P���
is well fitted by a function �−1.25. For sufficiently small �,
however, �1 /�� behavior was obtained, followed by a sharp
cutoff at still smaller �, due to the finite size of the sample.
A different analytical approach was recently developed in
Ref. 10, for a discrete tight-binding random chain. The limit
of strong disorder �i.e., opposite to that of Ref. 8� was con-
sidered and the �1 /�� behavior �for a semi-infinite chain�
was derived.

In the present paper we develop an approach to the prob-
lem of resonances. The approach is based on counting the
number of poles of a resolvent of the corresponding non-
Hermitian Hamiltonian. We derive a set of equations for a
semi-infinite disordered chain, coupled to a �semi-infinite�
lead. This set contains, in principle, the full solution of the
problem, for an arbitrary coupling strength and disorder. The
equations simplify considerably in the weak coupling re-
gime. For this case we rigorously derive the asymptotically
exact �1 /�� rule and present a simple scaling formula, which
contains only the product of the localization length and the
density of states, at the relevant energy.

II. MODEL AND ITS EFFECTIVE HAMILTONIAN

The system is depicted in Fig. 1. Black dots, labeled by
n=1,2 , . . ., designate sites along the semi-infinite disordered
chain. Each site of the chain is assigned a site energy, �n.
Different �n’s �n=1,2 , . . . � are independent random variables
chosen from some distribution q���. Open circles, labeled by
n=0,−1,−2, . . ., represent a perfect semi-infinite lead to
which the chain is coupled. All sites of the lead are assigned
�n=0. The lead simulates the free space outside the chain. All
nearest neighbor sites of the chain are coupled to each other
by a hopping amplitude t, and the same is true for all nearest
neighbor sites of the lead. The only exception to this rule is
the pair �0,1� which provides coupling between the chain and
the lead. The hopping amplitude for this pair is taken to be
equal to t�. This allows us to tune the coupling from t�=0
�closed chain� to t�= t �fully coupled chain�.

As was mentioned in the Introduction, the most direct
approach to the problem of resonances is based on solving
the stationary Schrödinger equation with the boundary con-
dition of an outgoing wave �see Fig. 1�. The Schrödinger
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FIG. 1. A one-dimensional chain coupled to a lead. Sites of the
disordered chain are denoted by black dots. Sites of the lead are
denoted by open circles. The arrow represents the outgoing wave.
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equation for the entire system �chain+lead� is a set of
coupled equations

− t�n+1 − t�n−1 = Ẽ�n �for n � 0� , �1�

− t�−1 − t��1 = Ẽ�0 �n = 0� , �2�

− t�2 − t��0 + �1�1 = Ẽ�1 �n = 1� , �3�

− t�n+1 − t�n−1 + �n�n = Ẽ�n �n � 1� . �4�

We recall that �n=0 for n�1 �the lead� and it is random for
n	1 �the chain�. Equations �1�–�4� are to be solved sub-
jected to the boundary condition of an outgoing wave in the

lead, i.e., �n�exp�−ik̃n�, for n
0, with Im k̃�0. The com-

plex wave vector k̃ is related to Ẽ by Ẽ=−2t cos k̃. Using the
plane wave shape of the outgoing wave in the lead, it is
straightforward to eliminate from Eqs. �1�–�4� all �n’s with
n�1, thus reducing the problem to a system of equations for
the amplitudes �n on the sites of the disordered chain alone
�n=1,2 , . . . �:

− t�n+1 − t�n−1 + �̃n�n = Ẽ�n �n = 1,2, . . . � �5�

with the condition �0=0. Here �̃n=�n for n=2,3 , . . ., but not
for n=1. This end site is assigned a complex energy

�̃1 = �1 − t� exp ik̃ , �6�

where the parameter �= �t� / t�2 describes the coupling
strength to the outside world. Thus, the resonances are given
by the complex eigenvalues of the non-Hermitian effective
Hamiltonian defined in Eq. �5�. This non-Hermitian Hamil-

tonian, H̃, differs from the Hermitian Hamiltonian, H, of the
corresponding closed system �i.e., with �=0� only by the
complex correction to the energy of the first site �Eq. �6�� as
follows:

H̃ = H − t�eik̃P , �7�

where P is the projection on site 1. We set the energy scale

by taking t=1 and denote by z the complex variable Ẽ / t.

Note that, since k̃ is related to z via z=−2 cos k̃, the effective

Hamiltonian H̃ depends on z. Thus, Eq. �5� does not consti-

tute a standard eigenvalue problem and the eigenvalues of H̃
have to be determined self-consistently. Defining formally

the resolvent G̃�z�= �z− H̃�−1 we can write

G̃ = �z − H + �eik̃P�−1

= ��z − H��1 + �eik̃GP��−1

=
1

1 + �eik̃GP
G , �8�

where G= �z−H�−1 is the “unperturbed” resolvent. Reso-

nances correspond to the singularities of the matrix G̃nm�z�,
in the complex z plane, or to the roots of the equation

1 + �eik̃�z�G11�z� = 0, �9�

where G11�z� is the �1,1� element of G in the site represen-
tation.

III. EXPRESSION FOR THE AVERAGE DENSITY
OF RESONANCES

Let us write G11�z� as

G11�z� =
1

z − �1 − S1�z�
, �10�

where S1�z� is the self-energy for site 1. Equation �9� can be
written as

F�z� � z − �1 − S1�z� + �eik̃�z� = 0. �11�

Denoting the zeros of F�z� by z�, we write the density of
resonances �DOR�, for a given realization of the disorder, as
��z�=���z−z��. This expression refers directly to the semi-
infinite chain and it should be understood as the N→� limit
of the analogous expression for a finite chain, of size N. The
limit is well defined for any Im z�0 and no division of the
sum by N is necessary,10 in contrast to the usual case of the
density of states �on the real axis� for a Hermitian problem.

Here we see a crucial difference between the open system
���0� and the closed one ��=0�. In the closed system, all N
roots of Eq. �11� are real and in order to obtain a well defined
N→� limit, we would need to divide ��z� by N, getting in
the limit the density of states. However, in the open system,
the roots of Eq. �11� are complex and the average value of
��z� itself has a well defined limit, which is what we call the
density of resonances.

It is convenient to define a  function of a complex vari-
able F as �F���Re F��Im F� and to use the relation

�
�

�z − z�� = �F��z��2„F�z�… , �12�

where the prime indicates a derivative with respect to z. This
relation is a generalization of the corresponding relation for a
real variable. It is valid if F�z� is analytic in a domain con-
taining the zeros z� and F��z���0. Indeed, under such con-
ditions in the neighborhood of a zero, the equation w=F�z�
can be solved by an analytic function z=z�w� and the Jaco-
bian of the change of variables from �Re w , Im w� to
�Re z , Im z� is �F��z��2 due to the Cauchy-Riemann equations.
We will assume that F��z���0 with probability 1. Substitut-
ing Eq. �11� for F�z�, we have

��z� = �1 − S1��z� + ����z��2„z − �1 − S1�z� + ���z�… ,

�13�

where ��z� stands for the expression eik̃�z�.
Next we average Eq. �13� over all realizations of the set

��n	 of the random site energies �we denote this average by
angular brackets�. Since the self-energy S1�z� does not de-
pend on the energy �1 of the first site, we can single out the
variable �1 and average over it explicitly. This leads to the
following expression for the average DOR:
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��z�� =� d�q���
��1 + ����2 − 2 Re��1 + ����S1��

+ �S1��
2	�z − � − S1 + ���� . �14�

The two correlated random variables, S1 and S1�, depend on
the set ��2 ,�3 , . . . 	 of the random site energies. Note that we
do not need to know the joint probability distribution for S1
and S1�. Indeed, only three special combinations of these two
variables appear in Eq. �14�. It is therefore useful to intro-
duce three functions

f�w� = 
�S1 − w�� , �15�

g�w� = 
S1��z��S1 − w�� , �16�

h�w� = 
�S1��z��2�S1 − w�� , �17�

and write Eq. �14� as


��z�� =� d�q�����1 + ����z��2f„z − � + ���z�…

− 2 Re„1 + ����z�…g„z − � + ���z�…

+ h„z − � + ���z�…� . �18�

We emphasize that S1 refers to a closed �semi-infinite� chain,
so that one can use the standard relations for various quan-
tities of the Hermitian problem.11 In particular, we will need
the relation

S1�z� =
1

z − �2 − S2�z�
, �19�

where S2�z� is the self-energy for site 2, with site 1 excluded.
It immediately follows that

S1��z� = − S1
2�z�„1 − S2��z�… . �20�

With the help of the definitions �15�–�17� and the recur-
sion relations �19� and �20� it is straightforward to derive
integral relations between the functions f , g, and h. For in-
stance, using Eq. �20�, h�w� can be rewritten as

h�w� = �1 − 2 Re S2� + �S2��
2��z − �2 − S2 −

1

w
�� .

�21�

The variable �2 is now “isolated” �i.e., all other quantities in
Eq. �21� do not depend on this variable� and can be averaged
over. This leads to

h�w� =� d�q���� f�z − � −
1

w
� − 2 Re g�z − � −

1

w
�

+ h�z − � −
1

w
�� . �22�

The two other equations can be derived in a similar way,
yielding

g�w� =
w2

�w�4 � d�q����g�z − � −
1

w
� − f�z − � −

1

w
��

�23�

and

f�w� =
1

�w�4 � d�q���f�z − � −
1

w
� . �24�

Let us stress that the above defined functions of the complex
argument w are not complex valued functions in the usual
sense but rather shorthand notations for a function of two
real variables, w1 and w2. For instance, Eq. �24� for the func-
tion f�w�, which is the probability distribution for the real
and imaginary parts of the self-energy S1=w1+ iw2, can be
written more explicitly as

f�w1,w2� =
1

�w1
2 + w2

2�2 � d�q���f

��x − � −
w1

w1
2 + w2

2 , y +
w2

w1
2 + w2

2� . �25�

The three equations, Eqs. �22�–�24�, supplemented by the
expression �18� provide the general framework for comput-
ing the average DOR, 
��z��, in the complex plane z=x+ iy,
for any strength of disorder and for an arbitrary coupling �.
We do not attempt to solve the problem in its full generality
but rather restrict ourselves to the small �, i.e., weak cou-
pling case.

IV. WEAK COUPLING LIMIT

From now on we assume that the coupling constant � is
small and develop a “linear response theory” with respect to
�. In this limit the width of all resonances becomes propor-
tional to �, so that the “cloud” of resonances in the �x ,y�
plane gets squeezed toward the real axes. In order to define a
meaningful �→0 limit for the DOR, one must stretch the y
axis by a factor of 1 /�. This rescaling of the imaginary part
of the energy is crucial, and explains why the weak coupling
��→0� limit of the open system will differ significantly
from the �=0 case describing a closed system. It is natural to
switch from the original variable z=x+ iy to a new variable,
Z=X+ iY, where X=x and Y =−y /�, where the minus sign
accounts for the fact that the resonances are located in the
lower half plane of the complex variable z. Thus, in the Z
plane resonances appear in the upper half-plane and Y is the
resonance width, in units of �. The limiting �i.e., in the �
→0 limit� average DOR, 
�̃�X ,Y��, in the complex Z plane,
is related to the original DOR, 
��x ,y��, as


�̃�X,Y�� = lim
�→0

�
��X,− �Y�� . �26�

Next, we turn our attention to the functions f , g, and h in
the �→0 limit. The function f�w1 ,w2� is the probability dis-
tribution for the real and imaginary parts of the self-energy
S1. The shape of this function depends on the point z=x
+ iy. In the �→0 limit, as has been just explained, one
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should set y=−�Y, where Y does not depend on �. Further-
more, since the imaginary part of S1 is proportional to �, we
set w2=�W2. The distribution, F�W1 ,W2�, for the new vari-
ables �W1=w1 ,W2=�−1w2� is related to the distribution
f�w1 ,w2� for the “old” variables by F�W1 ,W2�
=�f�W1 ,�W2�. The distribution F�W1 ,W2� has a well de-
fined �→0 limit and it satisfies an integral equation, ob-
tained from Eq. �25� by transforming to the new variables
and taking the �→0 limit as follows:

F�W1,W2� =
1

W1
4 � d�q���F�X − � −

1

W1
, − Y +

W2

W1
2� .

�27�

The simplifying feature of the �→0 limit is that functions
g and h are easily expressible in terms of f . More precisely,
we have to define functions G and H of the new variables as
follows:

G�W1,W2� = �g�W1,�W2�, H�W1,W2� = �h�W1,�W2� .

�28�

These functions, in complete analogy with F�W1 ,W2�, have a
well defined �→0 limit and satisfy integral relations which
are derived from Eqs. �22� and �23� by writing them in ex-
plicit form �compare to Eq. �25��, transforming to the new
variables and taking the �→0 limit. This yields

G�W1,W2� =
1

W1
2 � d�q����G�X − � −

1

W1
, − Y +

W2

W1
2�

− F�X − � −
1

W1
, − Y +

W2

W1
2�� �29�

and

H�W1,W2� =� d�q����H�X − � −
1

W1
, − Y +

W2

W1
2�

− 2 Re G�X − � −
1

W1
, − Y +

W2

W1
2�

+ F�X − � −
1

W1
, − Y +

W2

W1
2�� . �30�

One can easily check that Eqs. �29� and �30� are satisfied by

G�W1,W2� =
W2

Y
F�W1,W2�, H�W1,W2� = �W2

Y
�2

F�W1,W2� .

�31�

Now we can derive an expression for 
�̃�X ,Y��
�̃�X ,y��, in
terms of the function F, by taking the �→0 limit in Eq. �18�
and using Eqs. �26� and �31� as follows:


�̃�X,Y�� = � Im ��X�
Y

�2� d�q���F„X − �,− Y + Im ��X�… .

�32�

Note that, since z=X+ i�Y, in the �→0 limit k̃�z� ap-
proaches k�X� which is related to X by X=−2 cos k. There-
fore Im � in Eq. �32� is given by

Im � =�1 −
X2

4
. �33�

It is convenient to define a new variable, J=W2 /Y, so that J
is the imaginary part of self-energy �the resonance width� in
units of Y�. Finally, we denote W1 by R �the real part of the
self-energy� and define the probability distribution P�R ,J�,
instead of F�W1 ,W2�. P�R ,J� satisfies the integral equation

P�R,J� =
1

R4 � dR�q�x −
1

R
− R��P�R�,

J

R2 − 1� , �34�

where the integration variable � was replaced by R�=x−�
−R−1. The expression �32� for the average DOR now reads


�̃�X,Y�� =
1

Y3�1 −
X2

4
� � dRq�X − R�P�R,

1

Y
�1 −

X2

4

− 1� . �35�

While performing integration in Eqs. �34� and �35�, one
should keep in mind that the function P�R ,J� is identically
zero for R��J. This property follows from the basic recur-
sion relation for the self-energy S.

The integral equation �34�, supplemented by the expres-
sion �35�, completely defines the problem of resonances in
the weak coupling limit. Note that the coupling strength, �,
does not appear explicitly in these equations. It only deter-
mines the units in which the resonance width is measured
�the widths of all resonances are proportional to ��. Thus,

�̃�X ,Y�� is determined solely by the properties of the closed
system and, in this sense, Eqs. �34� and �35� describe the
regime of linear response with respect to the coupling
strength �. The function P�R ,J� describes the joint probabil-
ity distribution for the real and imaginary parts of the self-
energy �of the closed system and for z approaches the real
axis� and the integral equation �34� has appeared previously
in the study of Anderson localization.13 Integration of Eq.
�34� over J yields the integral equation for the probability
distribution, P�R�, of the real part of the self-energy as fol-
lows:

P�R� =
1

R2 � dR�q�x −
1

R
− R��P�R�� . �36�

This equation is very useful in the theory of one-dimensional
localization,11,12 because the knowledge of P�R� allows one
to compute the localization length, �, according to
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1

��X�
=� dR�P�R��ln�R�� . �37�

We shall use this relation in the next section.

V. LARGE-J ASYMPTOTICS

We were not able to obtain the complete analytic solution
of the integral equation �34�. It is possible, however, to find
the large-J asymptotics of the function P�R ,J�. We state the
result and give the proof later: To leading order in the small
quantity, 1 /J,

P�R,J� =
��X���X�

2J2 , �38�

where ��X� is the usual density of states, on the real energy
axis, for the closed chain. An important feature of this result
is that the large-J asymptotics does not contain R. Therefore,
by plugging Eq. �38� into Eq. �35� we immediately obtain the
simple result for the small-Y asymptotic of the average DOR
as follows:


�̃�X,Y�� =
��X���X�

2Y
. �39�

Note that the factors containing 1− X2

4 �D2 had canceled, so
that X enters only via the density of states and the localiza-
tion length. This cancellation is the consequence of the ob-
vious scaling property of the general equation �35�, namely,
the dependence on D drops out if one transforms to a new
variable, Y →Y /D, and to a new function, �→D�. Thus, the
asymptotic �1 /Y� behavior is universal, in the sense that it
holds for any degree of disorder and for any −2�X�2.

It remains to prove the result stated in Eq. �38�. It is
convenient to define the function

W�R,J� = �
J

�

dJ�P�R,J�� �40�

and to study its large-J asymptotics. An integral equation for
W�R ,J� is derived by integrating Eq. �34� over the second
argument of P. While performing this integration one should
remember that the function P�R ,J�� is identically zero for
J��R2. It follows from this property that for J�R2

W�R,J� = �
0

�

dJ�P�R,J�� = P�R� �J � R2� . �41�

Combining both cases, i.e., J�R2 and J�R2, one obtains the
following integral equation:

W�R,J� = ��1 −
J

R2�P�R� +
1

R2�� J

R2 − 1� � dR�q�x −
1

R

− R��W�R�,
J

R2 − 1� . �42�

We are interested in the large-J behavior of W�R ,J�. It is
useful to define the Laplace transform

W̃�R,s� = �
0

�

dJe−sJW�R,J� �43�

and to study its small-s behavior. The integral equation for
the transform is obtained directly from Eq. �42� as follows:

W̃�R,s� = W̃0�R,s� + e−sR2� dR�q�x −
1

R
− R��W̃�R�,sR2� ,

�44�

where

W̃0�R,s� =
1

s
�1 − e−sR2

�P�R� . �45�

Anticipating that W�R ,J� is proportional to 1 /J, we look for
the solution �in the small-s limit� of Eq. �44� in the form

W̃�R,s� = A�R�ln s + B�R� + ¯ . �46�

This ansatz satisfies Eq. �44� if

A�R� =� dR�q�x −
1

R
− R��A�R�� �47�

and

B�R� = B0�R� +� dR�q�x −
1

R
− R��B�R�� , �48�

with

B0�R� = R2P�R� + A�R�ln R2. �49�

Since the site energy distribution, q���, is normalized to 1, it
immediately follows from Eq. �47� that A�R� is a constant.
We denote this constant by −a and determine it as follows.

Define a function ��R�� which is the nontrivial solution
of the integral equation

��R�� =� dR��R�q�x −
1

R
− R�� . �50�

Note that the kernel q�x− 1
R −R�� is not symmetric with re-

spect to R and R� and that Eq. �50�, unlike Eq. �47�, is not
solved by a constant. The solution of Eq. �50� is

��R�� =
1

R�2 P� 1

R�
� . �51�

We now go back to Eq. �48�, multiply it by ��R�, integrate
over R and, with the help of Eq. �50�, obtain

� dR��R�B0�R� = 0, �52�

which, using Eq. �49� and the aforementioned result A�R�
=const=−a, yields the value of a as follows:
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a =
� dRP�R�P� 1

R
�

� dR
1

R2 P� 1

R
�ln R2

, �53�

where the explicit form of ��R� �see Eq. �51�� has been used
at the last step. The integral in the numerator is known in
localization theory12 and is equal to the density of states
��X�. The integral in the denominator is equal to (2 /��X�)
�see Eq. �37��. Thus, in the small-s limit, W̃�R ,s�=−a ln s,
with a=��X���X� /2. As a consequence, in the large-J limit,
W�R ,J�=a /J and P�R ,J�=a /J2 which completes the proof
of Eq. �38�. One can also show that Eq. �48� has a

unique solution B�R� and the behavior of W̃�R ,s�
suggests that W�R ,J�=� /J+R2B�R� /J2+ ¯ and p�R ,J�
=� /J2+2B�R�R2 /J3+ ¯.

VI. CONCLUSIONS

We studied the average density of resonances �DOR� for a
semi-infinite disordered chain, coupled to the outside world
by a �semi-infinite� perfect lead. The main result of this work
is the expression �18� for the average DOR, supplemented by
the three integral equations, Eqs. �22�–�24�, for the three
functions, h, g, and f . This set of equations provides the
general framework for calculating the average DOR, for an
arbitrary disorder and coupling strength. We applied these

general equations to the case of weak coupling and derived
an asymptotically exact expression for the average DOR, in
the limit of small resonance width �Eq. �39��. This expres-
sion is universal, in the sense that it holds for any degree of
disorder and everywhere in the �unperturbed� energy band.

It is worthwhile to emphasize the essential difference be-
tween the average DOR, as defined in this paper, and the
probability distribution of the resonance widths, often used
in the literature �see, e.g., Ref. 5�. For a finite size chain, of
N sites, the two quantities differ only by a factor N. How-
ever, when N approaches �, the probability distribution
shrinks toward a delta function, while the average DOR ap-
proaches a perfectly well defined limit. Since we have taken
a semi-infinite chain from the start, it was essential for us to
work with the average DOR, rather than with the probability
distribution of the resonant widths. This enabled us to obtain
the 1 /Y behavior in the N→� limit, in contrast to the state-
ment of Ref. 5 that in that limit the 1 /Y behavior has no
region of applicability.
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